kinetics Documentation
Release 1.4.1

William Finnigan

Dec 15, 2021

Contents

1 Features 3
1.1 Installation e e e e e e e e e 3
1.2 Why, What and How tobuildmodels 4
1.3 Simple Tutorial L 6
1.4 Advanced Tutorial e 9
1.5 Reactions i e e e e e 13
1.6 Custom Reactions e e e 16
L7 APL . . e e 18
1.8 Authors e e e 18
1.9 ChangeLog e 18
2 Support 19
3 License 21
Index 23

kinetics Documentation, Release 1.4.1

kinetics - a open-source python package for modelling multi-enzyme reactions with uncertainty

ABC

kot [Enz1] - [4] da_
T Kut A i

_ kear* [Enz2] - [B] B
T T KutiBl) _

kinetics is a package for modelling reactions using ordinary differential equations. It’s primarily aimed at modelling
enzyme reactions, although can be used for other purposes.

kinetics uses scipy.integrate.odeint to solve ordinary differential equations, but extends upon this to allow the use of
parameter distributions rather than single parameter values. This allows error to be incorporated into the modelling.

kinetics uses scipy’s probability distributions, with a large number of distributions to choose from. Typically uniform
, normal, log-uniform or log-normal distributions are used.

Documentation: ReadTheDocs

Github: kinetics

Requirements: NumPy, SciPy, matplotlib, tqdm, pandas, SALib, seaborn, and deap.
Installation: pip install kinetics

Citation: Finnigan, W., Cutlan, R., Snajdrova, R., Adams, J., Littlechild, J. and Harmer, N. (2019), Engineering a
seven enzyme biotransformation using mathematical modelling and characterized enzyme parts. ChemCatChem.

Contents 1

https://docs.scipy.org/doc/scipy/reference/stats.html/
http://kinetics.readthedocs.org
https://github.com/willfinnigan/kinetics
http://www.numpy.org/
http://www.scipy.org/
http://matplotlib.org/
https://tqdm.github.io
http://pandas.pydata.org
https://salib.readthedocs.io
http://seaborn.pydata.org
https://deap.readthedocs.io/en/master/
https://doi.org/10.1002/cctc.201900646
https://doi.org/10.1002/cctc.201900646

kinetics Documentation, Release 1.4.1

2 Contents

CHAPTER 1

Features

* Construct systems of ODEs simply by selecting suitable rate equations and naming parameters and species.
* Use either simple parameter values or probability distributions.

* Run sensitivity analysis using SALib

* Easily plot model runs using predefined plotting functions

¢ Optimisation using genetic algorithm using DEAP (coming soon)

1.1 Installation

It is highly recommended to use a distribution such as anaconda, which already contains many of the required pack-
ages.

1.1.1 Installing kinetics

To install the latest stable version of kinetics using pip, together with all the dependencies, run the following command:

pip install kinetics

1.1.2 Running in google colab

An easy way to get started quickly is to use a google colab. notebook.
In the first cell of the notebook, run !pip install kinetics to install the kinetics package.

Try this block of code in a google colab. notebook to get started quickly..

https://colab.research.google.com/
https://colab.research.google.com/

kinetics Documentation, Release 1.4.1

'pip install kinetics
import kinetics

Define reactions
enzyme_1 = kinetics.Uni (kcat='enzl_kcat', kma='enzl_km', enz='enz_1', a='A"',
substrates=['A'], products=['B'])

enzyme_1.parameters = {'enzl_kcat' : 100,
'enzl_km' : 8000}

Set up the model

model = kinetics.Model (logging=False)

model.append (enzyme_1)

model.set_time (0, 120, 1000) # 120 mins, 1000 timepoints.

Set starting concentrations

model.species = {"A" : 10000,
"enz_1" : 4,}

model.setup_model ()

Run the model

model.run_model ()
model.plot_substrate ('A")
model.plot_substrate('B', plot=True)

1.1.3 Prerequisite Software

You shouldn’t need to worry about this if using the anaconda python distribution, and pip install kinetics.

kinetics requires NumPy, SciPy, matplotlib, tqdm, pandas, SALib, seaborn, and deap,installed on your computer.
Using pip, these libraries can be installed with the following command:

pip install numpy

pip install scipy

pip install matplotlib
pip install tgdm

pip install pandas

pip install salib

pip install deap

pip install seaborn

The packages are normally included with most Python bundles, such as Anaconda. In any case, they are installed
automatically when using pip or setuptools to install kinetics.

1.2 Why, What and How to build models

1.2.1 What is a model?

In the cases of the deterministic kinetic models this package deals with, a model is a set of ordinary differential
equations (ODESs), which describe changes in substrate concentrations over time. Essentially a model is answering the
question: “how fast will my reaction go?”’

To define the rate at which substrates concentrations change over time, we define rate laws.

4 Chapter 1. Features

http://www.numpy.org/
http://www.scipy.org/
http://matplotlib.org/
https://tqdm.github.io
http://pandas.pydata.org
https://salib.readthedocs.io
http://seaborn.pydata.org
https://deap.readthedocs.io/en/master/
https://pip.pypa.io/en/stable/installing/

kinetics Documentation, Release 1.4.1

The most well known of these is the Michaelis-Menton equation. A—enz—>B Our rate law would be:

Cenz * Keat - Ca

t =
rate oAt K2
And our Ordinary Differential Equations (ODEs) are:
dA y
g = rate
5 _ +rat
o = Trate

Keep in mind that using Michaelis-Menton kinetics we are making the steady-state assumption, among others. For
more on this see: Reaction Chemical Kinetics in Biology, N. J. Harmer, M. Vivoli Vega, in Biomol. Bioanal. Tech.
(Ed.: V. Ramesh), 2019, pp. 179-217

1.2.2 Why build a model?

A model is simply a mathematical description for what an experimenter ‘thinks’ will happen in a reaction. For
single enzymes, relatively simple mental or back-of-the-envelope models are often sufficient. For example, it is fairly
obvious in the majority of cases that more enzyme results in a faster reaction. However, as we begin to build more
complicated multi-enzyme reactions, the increasing complexity of these systems requires a more methodical approach.
Constructing a kinetic model allows the dynamics of such a system to be investigated in silico, and to ask questions
such as, more of which enzyme gives a faster reaction?

1.2.3 How to build a model?

The simple and advanced tutorials in this documentation deal with how to use the kinetics package to build models of
reactions.

However, before writing the code we need to understand which reactions we need to model, and the mechanisms
behind them.

A good first step is to draw a reaction scheme such as:

1 r2
A —GomeD—~ B —GEamed>—~(C

From this (albeit simple) example, we can see we need rate equations for enzyme 1 and enzyme 2.

The next step is to identify the mechanism of these enzymes. In this case both enymes take a single substrate, so can
be modelled using either the uni-irreversible or the uniuni-reversible rate equations (see section on reactions).

Where multiple substrates are present (as is common), more options are available to pick from. Literature is a good
place to find the appropriate mechanism for you enzyme, from which you can identify which rate equation to use.

Having found the appropriate rate equations, follow either the simple or advanced tutorials to model your system using
this package.

1.2. Why, What and How to build models 5

https://onlinelibrary.wiley.com/doi/10.1002/9781119483977.ch9
https://onlinelibrary.wiley.com/doi/10.1002/9781119483977.ch9

kinetics Documentation, Release 1.4.1

1.2.4 Conceptual diagram for how this package works

model.species = {}
model.set_time(model.run_model)
model.setup_model) . model.results_dataframe(

— model.plot_substrate()
D e

Single model
un

probability import kinetics.Uncertainty as ua

distributions. ———= Samples = ua . from_distributions(
out il_m

df = uadataframes_quartiles()

df-ua.dataframes_all_runs()

1.3 Simple Tutorial

I recommend running this using a jupyter notebook.
Alternatively use a google colab. notebook to get started quickly. (Use !pip install kinetics in the first cell)

Or here is a direct link to this workbook in google colab. https://colab.research.google.com/github/willfinnigan/
kinetics/blob/master/examples/Simple_example.ipynb

This example shows the code required to model the relatively simple system shown on the main page. The complete
example as a single block of code is available at the end.

A —Gme>—~ B —GEame>—(C

dla) _
Kiy +[A] d[HdL

_ keat* [Enz2) - [B] TJ =rl-r2

_ kear* [Enz1] - [4] -r

1

1.3.1 Complete code example

Below is the complete code for this example. Copy it into a jupyter notebook or google colab notebook to get started.
This example is then explained step by step in the rest of this tutorial.

Uncomment and run this if using google colab
!pip install kinetics

import kinetics
import matplotlib.pyplot as plt

%config InlineBackend.figure_format ='retina'

Define reactions

enzyme_1 = kinetics.Uni (kcat='enzl kcat', kma='enzl_km', enz='enz_1', a='A"',
substrates=["A"'], products=['B'])
enzyme_1.parameters = {'enzl kcat' : 100,
'enzl km' : 8000}
enzyme_2 = kinetics.Uni (kcat='enz2_ kcat', kma='enz2_ km', enz='enz_2', a='B',
substrates=['B'], products=['C'])
enzyme_2.parameters = {'enz2_ kcat' : 30,
'enz2_km' : 2000}

Set up the model
model = kinetics.Model (logging=False)

(continues on next page)

6 Chapter 1. Features

https://colab.research.google.com/
https://colab.research.google.com/github/willfinnigan/kinetics/blob/master/examples/Simple_example.ipynb
https://colab.research.google.com/github/willfinnigan/kinetics/blob/master/examples/Simple_example.ipynb

kinetics Documentation, Release 1.4.1

(continued from previous page)

model . append (enzyme_1)
model . append (enzyme_2)
model.set_time (0, 120, 1000) # 120 mins, 1000 timepoints.

Set starting concentrations

model.species = {"A" : 10000,
"enz_1" : 4,
"enz_2" : 10}

model . setup_model ()

Run the model
model . run_model ()
model .plot_substrate ('A")
model.plot_substrate('B")
model.plot_substrate('C', plot=True)

Now try altering the enzyme concentration, km or kcat, and re-running the model to_
—see the effects this has....

1.3.2 Define reactions

The first step in building a kinetic model using this package is to define rate equations which describe the rates of the
reactions in a system. Rate equations will typically contain rate constants, referred to as parameters here, and species
concentrations. Each rate equation which needs to be included in the model should be set up as a reaction object, as
shown below.

In this example, a pair of single substrate irreversible enzyme reactions which follow Michaelis-Menton kinetics are
shown:

import kinetics

enzyme_1

kinetics.Uni (kcat='enzl kcat', kma='enzl_ km',
enz='enz_1', a="'A",
substrates=['A"], products=['B'])

enzyme_1l.parameters = {'enzl kcat' : 100,
'enzl_km' : 8000}

enzyme_2

kinetics.Uni (kcat='enz2_ kcat', kma='enz2_ km',
enz='enz_2', a='B',
substrates=['B'], products=['C'])

enzyme_2.parameters = {'enz2_kcat' : 30,
'enz2_km' : 2000}

When setting up reactions, parameter names (kcat='enzl_kcat', kma='enzl_km') and species names
(enz='enz_1', a='A"',) are first given. These are used by the reaction when calculating the rate. A list
of substrates which are used up in the reaction, and products that are made in the reaction is the specified
(substrates=['A'], products=['B']).

Most of the common enzyme mechanisms are pre-defined in the package. For more information see Reactions (link).

Next we need to add these reactions to a model.

1.3. Simple Tutorial 7

kinetics Documentation, Release 1.4.1

1.3.3 Define the model

The model class is central to the kinetics package. It is essentially a list to which we append our reactions, with some
extra variables and functions to run the model.

import kinetics

Initiate a new model
model = kinetics.Model ()

Add reactions to the model

The reactions we defined above are appended to the model.

Append our reactions.
model . append (enzyme_1)
model . append (enzyme_2)

Set how long the model will simulate

The time that a model will simulate can be set by using:

Set the model to run from 0 to 120 minutes, over 1000 steps
model.set_time (0, 120, 1000)

Set starting species concentrations

The model defaults all starting species to O, for anything defined in the reactions. For the model to predict anything
useful, we need to give it starting concentrations (including the enzymes). Only species which are greater than 0 need
to be defined here.

Set starting concentrations

model.species = {"A" : 10000,
"enz_1" : 4,
"enz_2" : 10}

Run the model

Once everything is set, run model_one.setup_model () followed by model_one.run_model (). A
dataframe containing the simulation results is then available using model_one.results_dataframe (). Al-
ternatively, results can plotted directly using an in-built plot function model_one.plot_substrate ('A').

Setup and run the model
model . setup_model ()
model . run_model ()

Plot the results

model.plot_substrate('A")
model .plot_substrate('B")
model .plot_substrate('C', plot=True)

8 Chapter 1. Features

kinetics Documentation, Release 1.4.1

10000

1.4 Advanced Tutorial

This tutorial uses the same example as the simple tutorial, but demonstrates the use of probability distributions rather
than single parameter values.

Again [recommend running this using a jupyter notebook or google colab.

Here is a direct link to this example in google colab. Or here is a direct link to this workbook in google colab.
https://colab.research.google.com/github/willfinnigan/kinetics/blob/master/examples/Advanced_example.ipynb

1 r2
A —Gome DB —GEamed>—~(C

Ky + [A] d[ﬂdf
12 = Keat " [Enz2] - [B] =i
T KutB] aic _

dt

keae [Enz1] - [A]
=

r2

1.4.1 Define reactions with uncertain parameters

We can describe the uncertainty we have for a parameter using a probability distribution.

Where parameters have been characterised, resulting in a standard error, we can use this to describe a normal distribu-
tion.

Where we roughly know where a parameter is, but don’t want to make any suggestion as to more or less likley values,
we can use a uniform distribution.

Where we have absolutely no idea what value a parameter takes, we can use a log-uniform distribution (reciprocal) to
describe it was being equally as likely to be within a number of orders of magnitude.

Log-normal distributions can also be used. A recent paper describes how log-normal distributions can be created
taking into account numerous literature values.

To use these probability distributions in our modelling, we can employ the probability distributions available through
scipy.

Define our reactions as before, but this time we specify reaction.parameter_distributions. Make sure to import these
from scipy.

import kinetics
from scipy.stats import reciprocal, uniform, norm

Define reactions

enzyme_1 = kinetics.Uni (kcat='enzl_kcat', kma='enzl km', enz='enz_1', a='A",
substrates=["'A"'], products=['B'])
enzyme_1.parameter_distributions = {'enzl_kcat' : norm(100,12),
'enzl_km' : uniform (2000, 6000)}
enzyme_2 = kinetics.Uni (kcat='enz2_ kcat', kma='enz2_ km', enz='enz_2', a='B',

(continues on next page)

1.4. Advanced Tutorial 9

https://colab.research.google.com/github/willfinnigan/kinetics/blob/master/examples/Advanced_example.ipynb
https://docs.scipy.org/doc/scipy/reference/stats.html

kinetics Documentation, Release 1.4.1

(continued from previous page)

substrates=['B'], products=['C'])

enzyme_2.parameter_distributions = {'enz2_ kcat' : norm(30, 5),
'enz2_km' : reciprocal(1l,10000)}

Next we define our model as before.

Set up the model

model = kinetics.Model ()
model . append (enzyme_1)

model . append (enzyme_2)
model.set_time (0, 120, 1000)

We can include uncertainty in some or all of the starting species concentrations. Here we have specified uncertainty in
the enzyme concentraions using a normal distribution with a standard deviation of 5% of the starting value. We have
specified no uncertainty in the starting concentration of A.

Set starting concentrations

model.species = {"A" : 10000}

model.species_distributions = {"enz_ 1" : norm(4, 4x0.05),
"enz_2" : norm(10, 10+0.05)}

model . setup_model ()

1.4.2 Running the model with a single set of parameter values

We can run the model exactly as in the simple example, and we will get a single prediction for each substrate. Running
the model this way will use the mean of each probability distribution specified, unless a different value is specified.

model . run_model ()

model .plot_substrate ('A")
model .plot_substrate('B")
model.plot_substrate('C', plot=True)

10000

1.4.3 Running the model by sampling within the probability distributions

However we would like to run lots of models, sampling within our probability distributions.

To generate samples from within the distributions we have defined, run kinetics.
sample_distributions (model, num_samples=1000). This returns a set of samples which can be
used by kinetics.run_all_models (model, samples).

kinetics.run_all_models (model, samples) will return a list of outputs. Each entry in this list is equiv-
alent to model . y after running model . run_model ().

Run the model 1000 times, sampling from distributions
samples = kinetics.sample_distributions (model, num_samples=1000)
outputs = kinetics.run_all_models (model, samples, logging=True)

10 Chapter 1. Features

kinetics Documentation, Release 1.4.1

1.4.4 Plotting the data

To deal with the large amount of data this generates, two functions are available to generate a dictionary containing
dataframes for each species in the model.

dataframes_all_runs (model, output) will return dataframes containing every single run.

dataframes_quartiles (model, output, quartile=95) will return dataframes containing a High,
Low and Mean value, based on whatever quartile is specified (default=95%).

These dataframes can then be exported for further use, or can be used to generate plots.

Plotting graphs with confidence intervals

Plotting the 95% confidence intervals can look neater, but we lose some information on the outliers by doing this.

Plot model runs at 95% CI

ci_dataframes = kinetics.dataframes_quartiles (model, outputs)
kinetics.plot_ci_intervals(['A', 'B', 'C'], ci_dataframes, colours=['blue',
—'darkorange', 'green'], plot=True)

10000

wof O\

w00 /\\
2000 N

M

Plotting graphs showing all runs (spagetti plots)

Alternatively we can plot every single run. With 1000 runs this can look a bit chaotic, and it may be clearer to plot
each substrate on its own graph. Also, altering the alpha and linewidth values allows the graphs to be tweaked to
preference.

Plot all model runs

all_runs_dataframes = kinetics.dataframes_all_runs (model, outputs)
kinetics.plot_substrate('A', all_runs_dataframes, colour='blue', alpha=0.01,
—linewidth=5)

kinetics.plot_substrate('B', all_runs_dataframes, colour='darkorange', alpha=0.01,
—linewidth=5)

kinetics.plot_substrate('C', all_runs_dataframes, colour='green', alpha=0.01,
—~linewidth=5, plot=True)

Of course the dataframes are also available to be used as the output, possibly to create your own graphs or for other
analysis.

1.4. Advanced Tutorial 11

kinetics Documentation, Release 1.4.1

1.4.5 Complete code

import kinetics

import matplotlib.pyplot as plt

from scipy.stats import reciprocal, uniform, norm
$config InlineBackend.figure_format ='retina'

Define reactions

enzyme_1 = kinetics.Uni (kcat='enzl kcat', kma='enzl_ km', enz='enz_1', a='A',
substrates=['A'"], products=['B'])
enzyme_1l.parameter_distributions = {'enzl kcat' : norm(100,12),
'enzl_km' : uniform (2000, 6000)}
enzyme_2 = kinetics.Uni (kcat='enz2_ kcat', kma='enz2_ km', enz='enz_2', a='B',
substrates=['B'], products=['C'])
enzyme_2.parameter_distributions = {'enz2_ kcat' : norm(30, 5),
'enz2_km' : reciprocal(1l,10000)}

Set up the model

model = kinetics.Model (logging=False)
model . append (enzyme_1)

model . append (enzyme_2)
model.set_time (0, 120, 1000)

Set starting concentrations

model.species = {"A" : 10000}

model.species_distributions = {"enz_1" : norm(4, 4x0.05),
"enz_2" : norm(10, 10%x0.05)}

model . setup_model ()

Run the model 1000 times, sampling from distributions
samples = kinetics.sample_distributions (model, num_samples=1000)
outputs = kinetics.run_all models (model, samples, logging=True)

model . run_model ()

model.plot_substrate('A")
model.plot_substrate('B")
model .plot_substrate('C', plot=True)

Plot model runs at 95% CI

ci_dataframes = kinetics.dataframes_quartiles (model, outputs)
kinetics.plot_ci_intervals(['A', 'B', 'C'], ci_dataframes, colours=['blue',
—'darkorange', 'green'])

plt.show ()

Plot all model runs

all_runs_dataframes = kinetics.dataframes_all_runs (model, outputs)
kinetics.plot_substrate('A', all_runs_dataframes, colour='blue', alpha=0.01,
—linewidth=5)

kinetics.plot_substrate('B', all_runs_dataframes, colour='darkorange', alpha=0.01,
—linewidth=5)

kinetics.plot_substrate('C', all_runs_dataframes, colour='green', alpha=0.01,
—~linewidth=5)

plt.show ()

12 Chapter 1. Features

kinetics Documentation, Release 1.4.1

1.5 Reactions

kinetics works by specifying a Model () object to which reactions are added.

Reactions are first defined, selected from one of the reaction objects described here. Parameters are set and the reaction
added to the model.

For example:

import kinetics

enzyme_1 = kinetics.Uni (kcat='kcatl', kma='kmal', a='a', enz='enzl',
substrates=['a'], productions=['b'])

To specify single parameter values
enzyme_1.parameters {'kcatl': 100,
'kmal': 500}

To specify parameter distributions
enzyme_1.parameter_distributions = {'kcatl': norm(100,10),
'kmal': uniform(25,50)}

model = kinetics.Model ()
model . append (enzymel)

1.5.1 Michaelis-Menten kinetics, irreversible.
Uni

class kinetics.Uni (kcat=None, kma=None, a=None, enz=None, substrates=[], products=[])
The classic Miachelis-Menton equation for a single substrate.

Cenz * Keat - Ca
ca +,}(£}

Bi

class kinetics.Bi (kcat=None, kma=None, kmb=None, a=None, b=None, enz=None, substrates=[],
products=[])

Not strictly a true Miachaelis-Menton equation. Use with caution. Will give a reasonable prediction if one substrate is
saturating, otherwise is likely wrong.

CA CB
ca+ K]‘& cg+ K ﬁ

rate = Cens * Keat *

Bi Ternary Complex

class kinetics.Bi_ternary_ complex (kcat=None, kma=None, kmb=None, kia=None, a=None,
b=None, enz=None, substrates=[], products=[])

For reactions with two substrates which have an sequential mechanism (either ordered or random).

Cenz ° kcat *CA-CB

(K& -KB)+ (KB -ca)+ (K{; -cB)+ (ca-cB)

rate =

1.5. Reactions 13

kinetics Documentation, Release 1.4.1

Bi Ping Pong

class kinetics.Bi_ping_ pong (kcat=None, kma=None, kmb=None, a=None, b=None, enz=None,
substrates=[], products=[])

For reactions with two substrates which have a ping-pong mechanism

Cenz * Keat - CA - CB
(KB -ca)+ (K{; -cg)+ (ca-cp)

rate =

Ter seq redam

class kinetics.Ter_seq redam (kcat=None, kma=None, kmb=None, kmc=None, kia=None,
kib=None, enz=None, a=None, b=None, c=None, substrates=[],
products=[])

A three substrate rate equation which can be used for Reductive Aminase enzymes.

Cenz * kcat CACB - CC

rate =
(K;‘~KIB'K]%)JF(KIB'KJ%’CA)JF(K;"KA%~Cc)+(KAC4~CA~CB)+(K]€['CA'Cc)+(Kﬁ'CB~Cc)+(CA~CB~

Ter seq car

class kinetics.Ter_seq car (kcat=None, kma=None, kmb=None, kmc=None, kia=None,
enz=None, a=None, b=None, c=None, substrates=[|, products=[])

A three substrate rate equation which can be used for Carboxylic Acid Reductase enzymes.

Cenz 'kcat'cA'cB - CC
(Kf‘-cc)—&-(KAC/}-cA-cB)—l—(Kﬁ-cA-cc)—l—(Kjé[-cB-cc)—i—(cA-cB-cc)

rate =

Bi ternary complex small kma

class kinetics.Bi_ternary complex_small_kma (kcat=None, kmb=None, kia=None, a=None,
b=None, enz=None, substrates=[], prod-
ucts=[])

A special case of Bi Ternary Complex where kma << kia.

Cenz * kcat *CA " CB
(K KB)+ (KB -ca)+ (ca-cp)

rate =

1.5.2 Michaelis-Menten kinetics, reversible.
UniUni Reversible

class kinetics.UniUni_rev (kcatf=None, kcatr=None, kma=None, kmp=None, a=None, p=None,
enz=None, substrates=[|, products=[])

d
(Cenz - kf;i -ca) = (Cenz * kit - cp)

1+ A+ &
K ' Kn

rate =

14 Chapter 1. Features

kinetics Documentation, Release 1.4.1

BiBi Ordered Rev

class kinetics.BiBi_Ordered_rev (kcatf=None, kcatr=None, kmb=None, kia=None, kib=None,
kmp=None, kip=None, kig=None, enz=None, a=None,
b=None, p=None, g=None, substrates=[], products=[])

BiBi Random Rev

class kinetics.BiBi_Random_rev (kcatf=None, kcatr=None, kmb=None, kia=None, kib=None,
kmp=None, kip=None, kig=None, a=None, b=None, p=None,
g=None, enz=None, substrates=[], products=[])

BiBi Pingpong Rev

class kinetics.BiBi_Pingpong_rev (kcatf=None, kma=None, kmb=None, kia=None, kcatr=None,
kmp=None, kmg=None, kip=None, kig=None, enz=None,
a=None, b=None, p=None, g=None, substrates=[], prod-
ucts=[])

1.5.3 Equilibrium based reversible Michaelis-Menten kinetics

BiBi Ordered rev eq

class kinetics.BiBi_Ordered_rev_eq (keq=None, kcatf=None, kcatr=None, kma=None,
kmb=None, kmp=None, kmg=None, kib=None, kip=None,
kia=None, a=", b=", p=", q=", enz=", substrates=[],
products=[])

UniUni Ordered rev eq

class kinetics.UniUni_rev_eq (keq=None, kcatf=None, kma=None, kmp=None, a=", p=", enz="",
substrates=[|, products=[])

1.5.4 Equilibrium based mass action
UniUni Ordered rev eq

class kinetics.UniUni_rev_eq (keq=None, kcatf=None, kma=None, kmp=None, a=", p=", enz="",
substrates=[], products=[])

1.5.5 Modifiers of Michaelis-Menten kinetics eg for Inhibition

Modifications to rate equations for things like competitive inhibition can applied as follows:
(Remember to add new parameters to the reaction parameters)

Modifications are applied at each timestep of the model, for example calculating the apparent Km resulting from
competitive inhibtion.

This feature allows the easy modification of the pre-defined rate equations.

1.5. Reactions 15

kinetics Documentation, Release 1.4.1

enzyme_l.add_modifier (kinetics.CompetitiveInhibition (km="kmal', ki='kil', i="'1"))
enzyme_1.parameters.update ({'kil': 25})

class kinetics.SubstrateInhibition (ki=None, a=None)
class kinetics.CompetitiveInhibition (km=None, ki=None, i=None)
class kinetics.MixedInhibition (kcat=None, km=None, ki=None, alpha=None, i=None)

class kinetics.FirstOrder Modifier (kcat=None, k=None, s=None)

1.5.6 Generic Reaction Class

This reaction class could in theory be the only one you ever need. It allows you to specify your own rate equation.

class kinetics.Generic (params=[], species=[], rate_equation="", substrates=[], products=[])
This Reaction class allows you to specify your own rate equation. Enter the parameter names in params, and the
substrate names used in the reaction in species. Type the rate equation as a string in rate_equation, using these
same names. Enter the substrates used up, and the products made in the reaction as normal.

1.6 Custom Reactions

It’s not possible to pre-define every rate equation anyone would ever need. However many of the most common rate
equations are already set up (see section on Reactions).

There are two options for custom rate equations.

1.6.1 1. Use the Generic Reaction Class

This is a reaction class which lets you specify your own rate equation.

class kinetics.Generic (params=[], species=[], rate_equation="", substrates=[], products=[])
This Reaction class allows you to specify your own rate equation. Enter the parameter names in params, and the
substrate names used in the reaction in species. Type the rate equation as a string in rate_equation, using these
same names. Enter the substrates used up, and the products made in the reaction as normal.

An example which models a UniUni enzyme

import kinetics

import kinetics.Uncertainty as ua
import matplotlib.pyplot as plt
from scipy.stats import norm

stepl = kinetics.Generic (params=['kl', 'k_1'], species=['a','e',K 'ea'],
rate_equation=" (klxaxe)-(k_1lxea)"',
substrates=['a', 'e']l, products=['ea'l])

step2 = kinetics.Generic (params=['k2','k_2'], species=['ea','e','p'],
rate_equation="' (k2xea) - (k_2*eax*p) ',

substrates=['ea'], products=['e', 'p'l])

stepl.parameters = {'kl1"' : 0.1,
'k_1' : 0.001}

(continues on next page)

16 Chapter 1. Features

kinetics Documentation, Release 1.4.1

(continued from previous page)

step2.parameters = {'k2' : 100,
'k_2': 0.1}
stepl.parameter_distributions = {'kl' : norm(0.1, 0.01),
'k_1'" ¢ norm(0.001, 0.0001)}
step2.parameter_distributions = {'k2' : norm(100, 10),
'k_2'" : norm(0.1, 0.01)}
model = kinetics.Model ()
model . append (stepl)
model . append (step2)
model.species = {'e' : 1,
ta' : 100}
model . setup_model ()
model.run_model ()
model.plot_substrate('a')
model.plot_substrate('e'")
model .plot_substrate('ea')
model.plot_substrate('p")
plt.show ()
samples = ua.make_samples_from_distributions (model, num_samples=1000)
outputs = ua.run_all_models (model, samples, logging=True)
all_runs_dataframes = ua.dataframes_all_runs(model, outputs)

ua.plot_substrate('a', all_runs_dataframes, colour='blue', alpha=0.01, linewidth=5)
ua.plot_substrate('e', all_runs_dataframes, colour='darkorange', alpha=0.01,
—linewidth=5)

ua.plot_substrate('ea', all_runs_dataframes, colour='green', alpha=0.01, linewidth=5)
ua.plot_substrate('p', all_runs_dataframes, colour='purple', alpha=0.01, linewidth=5)
plt.show ()

1.6.2 2. Make your own reaction class.

This might be useful if its going to be re-used alot

To make a reaction class for a custom rate equation we need to define a new class which inherits from kinetics.
Reaction

The new class needs two funcions. an __init__ () function and a calculate_rate() function.

The following code example provides an example for doing this:

class My New Reaction (kinetics.Reaction):
def _ init_ (self,
paraml='"', param2='"', speciesl='"', species2='",

substrates=[], products=[]):

This is required to inherit from kinetics.Reaction

super () .__init__ ()
Set parameter and substrates names from the arguments passed in. The order is_,
—important—treres (continues on next page)

1.6. Custom Reactions 17

kinetics Documentation, Release 1.4.1

(continued from previous page)

param?2]
[speciesl,

self.parameter_names=[paraml,
self.reaction_substrate_names = species?]

Set the substrates and products from the arguments passed in.

Substrates are used up in the reaction, while produces are generated.
self.substrates =
self.products = products

substrates

def calculate_rate(self, substrates, parameters):

This function is used to calculate the rate at each time step in the model

It takes substrates and parameters as arguments,

which are lists with the_,

—same order as we defined in init .

Substrates
speciesl = substrates[0]
species2 = substrates[1]

Parameters
paraml = parameters[0]
param2 = parameters[1l]

This is where the rate equation goes.

rate = paramlxspeciesl + param2xspecies?2

return rate

An example 1s shown.

1.7 API
1.8 Authors

Will Finnigan - william.finnigan @manchester.ac.uk

1.9 Change Log

1.3.6 - Refactored Uncertainty.make_samples_from_distributions(..) to Uncertainty.sample_distributions(..) - Added
Uncertainty.sample_uniforms - Added test_simple_model - Added MixedInhibition2, which takes kic and kiu - Refac-
tored Senstivity module into Uncertainty - Added check to model, if no parameter is set in either reactions or model,

take mean of model.parameter_distribution

1.3.7 - Reorganised code, Uncertainty and Senstivity modules are now imported directly into kinetics. - Changed to
‘from setuptools import setup’ in setup.py - Changed docs to reflect changine in Uncertainty module import

18

Chapter 1. Features

mailto:william.finnigan@manchester.ac.uk

CHAPTER 2

Support

wjafinnigan @ gmail.com or william.finnigan @manchester.ac.uk

19

mailto:wjafinnigan@gmail.com
mailto:william.finnigan@manchester.ac.uk

kinetics Documentation, Release 1.4.1

20 Chapter 2. Support

CHAPTER 3

License

The project is licensed under the MIT license.

21

kinetics Documentation, Release 1.4.1

22 Chapter 3. License

Index

B

Bi (class in kinetics), 13

Bi_ping_pong (class in kinetics), 14

Bi_ternary_complex (class in kinetics), 13

Bi_ternary_complex_small_kma (class in kinet-
ics), 14

BiBi_Ordered_rev (class in kinetics), 15

BiBi_Ordered_rev_eq (class in kinetics), 15

BiBi_Pingpong_rev (class in kinetics), 15

BiBi_Random_rev (class in kinetics), 15

C

CompetitiveInhibition (class in kinetics), 16

F

FirstOrder_Modifier (class in kinetics), 16

G

Generic (class in kinetics), 16

M

MixedInhibition (class in kinetics), 16

S

SubstrateInhibition (class in kinetics), 16

T

Ter_seq_car (class in kinetics), 14
Ter_seq_redam (class in kinetics), 14

U

Uni (class in kinetics), 13
UniUni_rev (class in kinetics), 14
UniUni_rev_eq (class in kinetics), 15

23

	Features
	Installation
	Why, What and How to build models
	Simple Tutorial
	Advanced Tutorial
	Reactions
	Custom Reactions
	API
	Authors
	Change Log

	Support
	License
	Index

